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Abstract

A summary of the state-of-the-art in nonlinear finite element analysis is

made by describing a nonlinear theory and presenting some case studies. The

formulation is applicable to problems of large displacement and small strains.

The paper then focuses on the general purpose program. The concept and

development of a general purpose program is described. A discussion is then made

of the different sizes of problems which can be solved by such a program. These

sizes are dependent on the available computer core. The conclusion is made that

the general purpose program is a powerful means of implementing finite element

analysis over a wide spectrum of problems in structural mechanics.
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Introduction

In recent years we have seen an increasing use of the finite element

method for both research and development. This paper briefly summarizes the

method and traces the reasons for its widespread use.

The finite element method is dependent on the combination of two basic

ideas. The first is the recognition that problems in continuum mechanics may be

solved by complete satisfaction of only one of the two requirements of equilibrium

and compatibility if the other condition is also satisfied in an integral sense.

This approximate solution of the remaining condition in the integral sense is

brought about by the use of the principle of virtual work and theorems resulting

from it. The second idea is that the function for a whole domain may be better

approximated by local functions assumed within subdomains which also maintain con-

tinuity of the functions across the subdomains. The undetermined parameters for

the assumed local subdomain functions are then related to physical quantities of

displacement [1] or force [2] degrees of freedom at points or nodes on the bound-

aries of the subdomain. This then allows the definition of equations which define

either stiffness or flexibility matrices for the subdomain (or discrete element).

The combination of the relaxation of the requirement of either equilibrium or com-

patibility and the localized functions whose unknowns are represented by quan-

tities at nodes results in a considerable easing of the problems of geometry and

boundary conditions. Different subdomains may be modeled with different functions

and these may be used simultaneously for an analysis.

The finite element theory is usually cast in matrix theory since this

allows the large background of matrix theory to be exploited. Its development

occurred at the same time as the order of magnitude increase in computer speeds

and core size. This happy confluence of all the factors discussed above has



given rise to the widespread development and use of the finite element method.

Initially, its implementation took place in the form of specialized programs

written for specific purposes. Then as the method developed it became obvious

that a more general approach could be adopted in which the common tasks for every

finite element could be programmed once and for all. This has resulted in the

development of the general purpose finite element programs. These efforts have

the same overall strategy as the SPADE projects adopted for partial differential

equations. At present, the continued development of the general purpose programs

appears to be the best means of implementing finite element theory. Yet notwith-

standing this, little has appeared in the literature which specifically concerns

itself with the features and underlying philosophy of the general purpose program.

It is the purpose of the current paper to discuss the development of a general

purpose program.

Review of Literature

The present paper will trace developments from the original paper by

Turner et al. [1], and attention will be confined solely to the direct stiffness

method of finite element analysis.

Initially, work was concerned with developing elements [3-8] with compat-

ible displacements at the boundaries. This phase can now be said to be complete,

and elements exist to cover any two- or three-dimensional solids (including shell

structures). We may classify elements by the type of displacement modes assumed

and with this classification three types of elements can be recognized. In its

two-dimensional form these three may be referred to as the triangular, the orthog-

onal and the piecewise patching type of element.

In the triangular type of element, the displacement modes are assumed to

take the form of complete polynomials [1-4]. In the orthogonal type of element,
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the displacement modes are assumed to take the form of either Lagrange Polynomials

[3,5] or Hermitian Polynomials [6]. The Lagrange Polynomials [5] are also used

to extend the element formulation to quadrilaterals and curve shaped elements by

isoparametric techniques. In the patching type of element [7,8], usually used for

shells and referred to as the DeVeubeke element, the displacement modes are

assumed to be made up of a compatible patching of complete polynomials. Three-

dimensional equivalents also exist for the first two types of elements.

At the same time work [9,10] was reported which established a framework

by which the finite element method could be related to the methods used in contin-

uum mechanics. The finite element method is now recognized as a special case of

the Rayleigh-Ritz method where generalized modes are assumed over subdomains where

the generalized modes give rise to inter-element compatibility of displacements.

With the establishment of the method, attention was turned to extensions

for nonlinear analysis. In the area of material nonlinearity, two methods were

developed for elastic-plastic analysis. The method of initial strains is based

on the idea of modifying the equations of equilibrium so that the elastic equa-

tions can be used throughout on the left-hand side of the equations. Modifica-

tions are introduced on the right-hand side of the equation to compensate for the

fact that the plastic strains do not cause any change in the stresses. On the

other hand, the tangent modulus method is based on the linearity of the incremen-

tal laws of plasticity and approaches the problem in a piecewise linear fashion.

The load is applied in increments, and at each increment a new set of coeffi-

cients is obtained for the equilibrium equations. The matrix equations for the

finite element analysis using the method of initial strains were developed by

Padlog et al. [11], Argyris et al. [12] and Jensen et al. [13]. A recent paper

by Witmer [14] summarizes the latest application of the method. The equations
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for the tangent modulus method were developed by Pope [15], Swedlow and Yang [16]

and Marcal and King [17]. The two methods were compared by Marcal [18] and a

close similarity was found between them.

Progress has also been made in the area of geometric nonlinearity. Large

displacement analysis by the finite element method was first proposed by Turner

et al. [19]. Initial stress stiffness matrices were developed to account for the

effect of initial stress in truss and plane stress assemblies. Subsequent work

on the derivation of the initial stress matrices for other elements were reported

by Argyris et al. [20], Gallagher et al. [21] and Kapur and Hartz [22]. Martin

[23] placed the derivation of the initial stress matrix on a firm foundation by

using a potential energy formulation together with the nonlinear strain displace-

ment relation (for Green's strain). The above papers were concerned with forming

matrices which account for geometric changes in the solid during an increment of

load. These matrices were then either used in a piecewise linear manner or used

in an eigenvalue analysis of the Euler type. Recent papers [24,25] have drawn

attention to the fact that certain important terms were neglected in finite ele-

ment large displacement analysis. These neglected terms result in what was called

the initial displacement matrix and is a result of the coupling between the quad-

ratic and the linear terms in the strain displacement expressions.

Other workers solved the nonlinear equations of the finite element method

directly. Bogner et al. [26] performed a direct minimization of the potential

energy without explicitly forming the matrix stiffness equations. The large dis-

placement behavior was followed into the post-buckling region. Mallett and

Berke [27] applied this method to frameworks and Bogner et al. to plates and

shells [28]. Oden [29] and Oden and Kubitza [30] developed nonlinear stiffness

relations for the nonlinear elasticity problem. The equations were solved by a
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Newton-Raphson method. This series of works is perhaps best placed in a separate

category. It concerns itself with large strain, large displacement analysis. The

other papers reviewed previously have all implicitly assumed a large displacement

small strain theory. In addition, the constitutive equations used there are in

terms of an energy potential which is appropriate for a rubber-like material. A

similar formulation with appropriate assumptions of constitutive behavior gives

rise to equations for large strain large displacement analysis of metal structures

[31]. A recent survey by Oden [32] brings out the very general nature of the

finite element formulation.

Hence, we have seen that progress has been made in both nonlinear material

and geometric behavior. The two nonlinear formulations do not depend on each

other so that they may be profitably combined. In the present paper we shall

restrict our attention to a small strain large displacement theory appropriate to

shells and other solid metal structures.

In the area of elastic analysis by the finite element method, general pur-

pose computer programs exist which are written with a view to covering the whole

area of stress analysis. These general purpose programs exploit the generality

of the matrix formulation of the finite element method. The programs have a

library of elements which can be used for the modeling of most structures in

service. Melosh et al. [33] have summarized the more recent general purpose pro-

grams.

Technical Considerations

The theory outlined here has been developed previously in [34]. It is

included here for completeness. The displacement method of finite element analysis

will be used throughout. The structure to be analyzed is divided into a number

of elements. The behavior of each element is lumped into a number of nodal point
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displacements. Conforming displacement modes or simply conforming elements are

modes which maintain displacement compatibility between adjacent elements at the

element boundaries. The principle of virtual work is then used to effect the

lumping of the equivalent forces. The principle of virtual work is of course

applicable to large displacement as well as nonlinear material behavior.

A brief outline of the method is now given. A displacement mode is first

chosen for the type of element being used,

nU a f a.(x) = [f(x)]{a}(i

where u is the displacement at position x

x is used to represent the coordinates of the element

a. are the generalized displacements (also written {a})

n is the number of terms in the summation.

By substituting for x at the nodes obtain

{al = [a]{u} (2)

where {u} is the displacement at the nodal points (note that there is a dis-

tinction between the bracketed and unbracketed u ).

[a] is the nodal point to generalized displacement transformation matrix.

By the assumption of small strains we also have

A{a} = [Ea]A{u} (3)

where the prefix A denotes an increment of the quantity immediately following

it.

We now define the so-called differential operator [B] which transforms

an increment of generalized displacement to an increment of strain.
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A{e} = [B]A{a} (4)

The differential operator [B] is a function of position x and of

current displacement u . It is defined by writing the nonlinear strain dis-

placement equations (Green's strain) in incremental form.

The strain increment can be written as a stress increment for an elastic-

plastic material in the manner of Marcal and King for solids [17] and Marcal [35]

for plates and shells.

A{a} = [D]A{e} (5)

The stress increments A{a} are accumulated at representative points within each

element. Each representative point is given a set of reference axes which deform

with the element and so take the same direction as that defined by an increment

of Green's strain. Thus stresses and strain increments are automatically aligned

and the nonlinear equations of equilibrium can be set up with ease.

We now use the principle of virtual work to define equivalent forces {P}

at the nodes for a virtual displacement 6LuJ .

ALuJ{P} = 6LeJ{ldV = 6LuJ T[B ]T{a}dV (6)

where L I denotes a row vector, and integration is performed over the volume V

Cancelling the non-zero virtual displacements from both sides and writing

equation (6) in incremental form with the aid of equation (5), obtain

A{P} = f [0]T [B]T{c}dV + f [a]T[B]T[D][B][E]dVA{u} (7)

The last term on the right of equation (7) can be divided into a matrix which is

dependent on the current displacement and one which is not. With some rearrange-

ment, we obtain the element stiffness matrices T

" •' • J:• •'< 17-r, 3 'T''fr. .. .
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A{P} = ([k (1) 1 [k(2) ] [k (0)]) A{ul (8)

where [k(] is the initial stress matrix and is obtained from the first term

on the right of equation (7).

[k(2) is the initial displacement matrix of Marcal [25].

[k (0)] is the small displacement stiffness matrix.

The element stiffness matrices and the nodal equivalent forces are then

summed in the usual direct stiffness manner to obtain master stiffness equations

represented by equations in capitals

AM = ([K(I)] + [K(2)] + [K(O])A{u} (9)

General Purpose Programs

The stiffness equations developed are quite general and are not restricted

to a particular type of element. It is therefore possible to write a general pur-

pose program which implements the theory. This program will then serve as a basic

and common program to which subroutines may be added to account for specific char-

acteristics belonging to the particular type of element (or element combinations)

being used. Two general approaches to programming language have been adopted.

The one most favored by the developers of ASKA, FORMAT, MAGIC, NASTRAN, SAMIS and

STRUDL is to make use of some type of matrix interpretive language. Here the

intention is to develop machine independent concepts and also lay the foundation

for easy implementation of further theoretical developments. However, most of

these programs have been developed under the influence of particular computers and

programming languages, so that the aims of complete machine independence and free-

dom from bookkeeping requirements have not been fully achieved. On the other

hand, there have been other programs (ELAS, MARC2) which were developed with

FORTRAN as the programming language and making use of matrix support packages.



The one common feature to both approaches is the attempt to implement the

matrix manipulation required by the theory in as general a form as possible. We

see from (7) and (8) that the matrix operations required to form the stiffness

matrices do not change. Similarly, the assembly of the element stiffness to form

the master stiffness matrix does not change with different elements.

In order to focus on the advantages of general purpose programs, we shall

now focus on the program MARC2 developed at Brown University. Most of the features

found in this program can readily be included in other programs so that the points

to be discussed can be thought to apply equally to all programs in general. This

program was developed with the intention of carrying out the common matrix opera-

tions required to solve finite element problems with nonlinear material and/or

geometric behavior. Because it was meant to be used in a research environment,

it was organized with a view to minimize the coding required to implement new

elements. This is made easier by the use of numerical integration to form the

element stiffness matrices. Only four user subroutines are required to form the

[a][B] quantities and specify the weighting functions required to perform the

numerical integration. The general purpose program carries out the rest of the

calculations based on input data. In particular, a subroutine has been developed

to implement the incremental Prandtl-Reuss relations. Another subroutine inte-

grates these relations through the thickness for a plate or shell when required.

Various subroutines enable the assembled matrix equations to be solved by either

the direct or iterative approach, as well as giving the option of an in-core

assembly and out-of-core solution. This program simplifies combined elastic-

plastic or creep and large displacement analysis by reducing the amount of addi-

tional programming required from a user. The nonlinear problem is converted to

a series of piecewise linear problems. There is now an increase of an order of
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magnitude in computing time required compared to a linear elastic solution since

it takes about ten steps to trace the load history of a structure to its buckling

or limit load.

Figure 1 shows the flow chart for the general purpose program MARC2.

The procedures depicted in the main flow are the control, assembly, application

of boundary conditions and the solution of the master stiffness equation. Two

subroutines interface with the user subroutines and form the element stiffnesses

and the initial stress and strain vectors respectively. Their purpose is to

organize and perform the numerical integration to obtain the required quantities.

In turn, these subroutines draw on the subroutines which form the linear incre-

mental strain to stress transformation matrix [D] referred to above.

It is of interest to note here the various types of problems that can be

handled by the program. It is noted that these can be performed with any com-

binations of elements and any combination of the following classes of problems:

1. Elastic

2. Elastic-plastic

3. Creep

4. Thermal strains

5. Large displacement

6. Large strains

7. Buckling (eigenvalue analysis at any load level)

We see immediately the advantages of using a general purpose program. Any

feature implemented in the program can be combined with all previous developments.

As illustrations of this we give examples of two recent additions to the general

purpose program. The first was the implementation of a buckling analysis. Once

this feature was checked it meant that it was possible to make use of all
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previously developed elements with large displacement capabilities and perform

buckling analysis of beams, plates and shells. Conversely, as an example of using

the common features in the program, a new arbitrary, doubly curved shell element

[36] was recently developed. It was then possible to use the element in the solu-

tion of all the seven classes of problems outlined above. This ability to pre-

serve and exploit all previous developments is the main reason behind the impetus

towards development of general purpose programs in recent years. This generaliza-

tion is in accord with the development and use of computer programs in other areas.

One other advantage of the general purpose program is that the main flow of this

program will be used frequently and confidence in such a program will be more

readily established.

There are also some drawbacks in such a general approach which are perhaps

not so evident. First of all there is its slower running time because of the many

conditional statements in the program. This slower speed is particularly notice-

able in the larger computer systems where parallel computing devices are employed.

Such a program also tends to become large, particularly if there is a large team

working on it, and the limits of computer storage are quickly reached. Another

problem to be overcome is that of verification documentation and dissemination of

such a program. Because MARC2 was intended to be used in a research environment,

the coding has been kept to a minimum. Even so, it has grown to about 6000 FORTRAN

statements and already makes severe demands on new users. It is interesting to

note here that it takes a new user about a month and a half to learn the program

and begin to contribute to its development by modifying it. One major disadvantage

in developing such a program is the difficulty in keeping changes made by one

worker from interfering with the programming work of others.
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Note on the Cost of Computing

In this note we shall examine the relationship between the size of a

problem and the cost of computing. The actual cost of computing depends on the

system configuration and it is possible to obtain differences in costs of up to

factors of 2 by simply choosing different machines of the same nominal speed, as

well as by choosing the same make of computer but using it at different installa-

tions. The important point to be recognized is that core is now required on the

faster machines in such large sizes that its cost is as much as that of the

central processor (C.P.U.). Thus realistic accounting procedures recognize this

and, since particular system configurations are designed with certain functions

in mind, its use for other purposes may cause a certain penalty. We shall use

here the total system time as a measure of the computing required to solve each

problem and not merely the C.P.U. time used. The size of a problem is dependent

on the system configuration and will differ from one machine to the next. Thus

the following discussion is an attempt to measure the relative cost of solving

relatively large to small size problems on a particular computer. The ability to

handle large problems is dependent on the size of core available to the user and,

at the same time, it is also dependent on the core left for simultaneous use by

other users. Because the core requirements for a finite element problem are

determined by its master stiffness equation, we shall measure the size of the

problem by the product of the number of degrees of freedom with the half-band-

width. With this definition the size of a problem can be divided into three

distinct categories which are determined by the peripheral storage required to

solve the master stiffness equations. These solutions fall into the following

categories, viz., the in-core assembly and solution, in-core assembly and

out-of-core solution, and the out-of-core assembly and solution. In the first
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category the complete solution can be effected in-core. In the second, the core

requirements are such that assembly of the matrix can be performed in core by

packing the matrix while the solution is carried out with the aid of magnetic

discs or tapes. This course of action usually doubles the size that can be

handled by an in-core solution. Finally, the third category is one in which the

problem is so large that both assembly and solution must be performed out of core.

Figure 2 shows a plot of total system time used against the size of problem. The

limits of the in-core solution and the partial in-core solution are shown.

Because of the relative speeds of C.P.U. to 1./0. operations the total system time

is shown increasing with increasing computer speeds. No attempt is made to show

relative computing costs. Figure 2 also shows a curve for computing on a time-

shared machine which is able to simulate practically unlimited core size for the

user, the so-called virtual machines. It appears that operation on such a com-

puter does not penalize a user unduly for working out of core since this is the

normal mode of operation for which the system is planned. A distinct advantage

in cost can be gained by solving the larger problems on such a machine. The

writer's experience does bear this out.

The demands on the computer is not the only cost involved in a finite ele-

ment analysis since the effort required for coding and the preparation of data

must also be taken into account. The question of overall economics deserves

further attention. It would be interesting, too, to combine this with further

study of future hardware and software development of computer systems.

Case Studies

In this section we present a series of case studies which illustrate

various facets of the current state-of-the-art of finite element analysis. It

is hoped that these studies taken together will give an overall picture of the
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progress made in this area. The writer has mainly drawn from results obtained in

conjunction with his colleagues. Other choices could also have been made, but

the present ones simply reflect greater familiarity with the results, as well as

ready access to it.

1. Substructural Analysis of the 747 Aircraft Wing-Body Intersection [37]

This example of an elastic analysis is included to show the large-scale

problems that are handled by the finite element method. The method of substruc-

tures or matrix partitioning is found to be the best way of reducing the problem

to manageable proportions in both the data handling and the equation solving

aspects of the problem. The substructures are shown in schematic form in Fig. 3.

These were idealized by a combination of rod, beam, shear and constant strain

elements. The whole problem resulted in 13,870 degrees of freedom. The sub-

structuring reduced the largest band-width that had to be handled at any one stage.

In connecting the substructures there were a total of 709 degrees of freedom that

interacted at the interface. The effort that is involved in performing the anal-

ysis of the problem is described in [37]. The problem is restricted to linear

elastic behavior; however, with the current rate of progress in the area, it is

not difficult to envisage the same problem being solved with nonlinear material

and geometric behavior.

It is of interest to note that about a hundred man-months of effort

stretching over seven months was required. Much of the model idealization and

work on the substructures proceeded in parallel. Twenty-eight hours of CDC 6600

C.P.U. time and one hundred and twenty hours of residency time was required for

an error-free pass through the system.
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2. Elastic-Plastic Analysis of Tensile Specimen with Semi-Elliptic Crack [38)

The next example is one of the analysis of a semi-elliptic crack in a

tensile specimen using a combination of 648 three-dimensional cubic and isopara-

metric elements [38] and 900 nodal points or 2,700 degrees of freedom. Eight

layers of elements were used to model the problem. Figure 4 shows the bottom

layer of elements and the layout adopted to represent the semi-elliptic crack.

The solution was carried out by first obtaining the load to cause the most highly

stressed element to yield. Four increments, each equal to 0.07 of the elastic

load were added to study the elastic-plastic behavior. The progress of plastic

yielding in the second and fourth load increment is shown in Fig. 5. The elastic

solution took 45 minutes of C.P.U. time on the IBM 360-91, and subsequent elastic-

plastic increments took about 15 minutes per increment. A method of successive

over-relaxation was used.

3. Analysis of Shell-Nozzle Junction with Combined Shell and Triangular Ring

Elements [39]

This example is included to show a combination of shell and solid elements

by the method of linear constraints [39]. A mild steel shell nozzle junction

under pressure was studied experimentally by Dinno and Gill [40]. This same prob-

lem was analyzed using the mesh in Fig. 6. Triangular ring elements are used in

and around the weld section, and shell elements are used throughout the main body

of the shell and nozzle. Comparison of the finite element results with experi-

mental data is shown in Fig. 4. The actual differences between the peak stresses

can be seen in Table 1. The hybrid finite element results show considerable

improvement over a previous modified shell theory approach using a band of pres-

sure for the junction [41]. That theory was itself a large improvement over the

simple shell theory.
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LIMIT OF PROPORTIONALITY
(lb/in2

Experimental [40] 800

Simple shell theory [41] 340

Band theory [41] 630

Hybrid analysis 793

TABLE 1. First Yield of Shell-Nozzle Junction
with Internal Pressure

4. Imperfect Hemisphere under External Pressure [42]

This example shows the combined effect of nonlinear geometric and material

behavior. Both of these act together to drastically weaken the load resistance

of the structure. The oblate spherical shell of Fig. 8 was analyzed by Bushnell

[43] in the nonlinear elastic region. It was there observed that high "elastic',

stresses were observed at the crown of the shell prior to collapse. This shell

was analyzed with a dimensionless yield stress of 0.00666 E together with a linear

work-hardening curve with a slope of 0.05 E. This corresponds roughly to the

stress strain curve of an Aluminum Alloy.

Figure 9 gives a comparison between the buckling pressure of the elastic

shell of [43] and the present elastic-plastic results. The results are plotted

in terms of the parameters used in [43]. The classical buckling load p c is

defined by

= 1.21(2H/R) 2 E

where E is the Young's Modulus

R is the radius of the sphere

and H is the half-thickness.
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The geometric parameter X is defined by

X = V12(l-v 2 ) ( 1/2 R.

where R. =mean radius of the oblate nortion of the sphere, v =Posn'imp.

Ratio.

Plastic yielding has a considerable effect on the behavior of the oblate

shells under external pressure. This effect increases with the thickness to

radius ratio. It is noted that the failures at the higher thickness to radius

ratios (A X 1.5) are due to membrane yield.

Reasonable agreement is also obtained with the elastic results of Bushnell

[43] for the thinner shells which do not yield before buckling.

5. Infinite Incompressible Log [44]

The infinite log under symmetric line loading is shown in Fig. 10. This

problem was solved by Oden [44] using the generalized Newton-Raphson method. The

problem was reduced to 22 simultaneous equations by taking advantage of symmetry.

For illustration purposes, the line loading P was taken to be 200 lb/in and

for the Mooney constants C1 = 43.75 lb/in2 and C2 = 6.25 lb/in2 were used.

Results in the form of the deformed profile are indicated in Fig. 11.

Conclusions and Future Work

In this paper we have examined the formulation and the implementation of

a theory for nonlinear finite element analysis. The general purpose program was

shown to be a versatile and flexible method of implementing the basic theory.

It was found possible to classify three basic sizes of problems which were

dependent on the ability of the computer to either assemble or solve the master

stiffness matrix in core.
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Case studies were given to illustrate representative applications of the

theory. If, as is argued here, the general purpose program is the key to wide-

spread applications of the theory, then much more remains to be learnt about its

development and organization. Little is known about the best way to match pro-

grams with particular computer system configurations. Even less is known about

the impact of future hardware developments. Finally, rigorous procedures have

yet to be developed for verification of these programs.
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